Gdańsk
South Baltic Gas Forum
5 - 9 September 2011, Gdańsk, Poland

Power-to-gas

Power-to-gas (often abbreviated P2G) is a technology that converts electrical power to a gas fuel. When using surplus power from wind generation, the concept is sometimes called windgas. There are currently three methods in use; all use electricity to split water into hydrogen and oxygen by means of electrolysis.
In the first method, the resulting hydrogen is injected into the natural gas grid or is used in transport or industry. The second method is to combine the hydrogen with carbon dioxide and convert the two gases to methane (see natural gas) using a methanation reaction such as the Sabatier reaction, or biological methanation resulting in an extra energy conversion loss of 8%. The methane /SNG may then be fed into the natural gas grid or further converted in to LPG by synthesising SNG with partial reverse hydrogenation at high pressure and low temperature. LPG in turn can be converted into alkylate which is a premium gasoline blending stock because it has exceptional antiknock properties and gives clean burning. The third method uses the output gas of a wood gas generator or a biogas plant, after the biogas upgrader is mixed with the produced hydrogen from the electrolyzer, to upgrade the quality of the biogas.
Power-to-gas systems may be deployed as adjuncts to wind parks or solar-electric generation. The excess power or off-peak power generated by wind generators or solar arrays may then be used at a later time for load balancing in the energy grid. Before switching to natural gas, the German gas networks were operated using towngas, which for 5060 % consisted of hydrogen. The storage capacity of the German natural gas network is more than 200,000 GWh which is enough for several months of energy requirement. By comparison, the capacity of all German pumped storage power plants amounts to only about 40 GWh. The storage requirement in Germany is estimated at 16GW in 2023, 80GW in 2033 and 130GW in 2050. The transport of energy through a gas network is done with much less loss (<0.1%) than in a power network (8%). The storage costs per kilowatt hour are estimated at 0.10 for hydrogen and 0.15 for methane. The use of the existing natural gas pipelines for hydrogen was studied by the EU NaturalHy project and US DOE. The blending technology is also used in HCNG.
ITM Power won a tender in March 2013 for a Thuga Group project, to supply a 360 kW self-pressurising high pressure electrolysis rapid response PEM electrolyser Rapid Response Electrolysis Power-to-Gas energy storage plant. The unit produces 125 kg/day of hydrogen gas and incorporates AEG power electronics. It will be situated at a Mainova AG site in the Schielestrae, Frankfurt in the state of Hessen. The operational data will be shared by the whole Thuga group the largest network of energy companies in Germany with around 100 municipal utility members. The project partners include: badenova AG & Co. kg, Erdgas Mittelsachsen GmbH, Energieversorgung Mittelrhein GmbH, erdgas schwaben GmbH, Gasversorgung Westerwald GmbH, Mainova Aktiengesellschaft, Stadtwerke Ansbach GmbH, Stadtwerke Bad Hersfeld GmbH, Thuga Energienetze GmbH, WEMAG AG, e-rp GmbH, ESWE Versorgungs AG with Thuga Aktiengesellschaft as project coordinator. Scientific partners will participate in the operational phase. It can produce 60 cubic metres of hydrogen per hour and feed 3,000 cubic metres of natural gas enriched with hydrogen into the grid per hour. An expansion of the pilot plant is planned from 2016, facilitating the full conversion of the hydrogen produced into methane to be directly injected into the natural gas grid.
The core of the system is a proton exchange membrane (PEM) electrolyser. The electrolyser converts electrical energy into chemical energy, which in turn facilitates the storage of electricity. A gas mixing plant ensures that the proportion of hydrogen in the natural gas stream does not exceed two per cent by volume, the technically permissible maximum value when a natural gas filling station is situated in the local distribution network. The electrolyser supplies the hydrogen-methane mixture at the same pressure as the gas distribution network, namely 3.5 bar.

eXTReMe Tracker
Organizers: