Gdańsk
South Baltic Gas Forum
5 - 9 September 2011, Gdańsk, Poland

Iron

Iron metal has been used since ancient times, although copper alloys, which have lower melting temperatures, were used even earlier in human history. Pure iron is relatively soft, but is unobtainable by smelting because it is significantly hardened and strengthened by impurities, in particular carbon, from the smelting process. A certain proportion of carbon (between 0.002% and 2.1%) produces steel, which may be up to 1000 times harder than pure iron. Crude iron metal is produced in blast furnaces, where ore is reduced by coke to pig iron, which has a high carbon content. Further refinement with oxygen reduces the carbon content to the correct proportion to make steel. Steels and iron alloys formed with other metals (alloy steels) are by far the most common industrial metals because they have a great range of desirable properties and iron-bearing rock is abundant.
At pressures above approximately 10 GPa and temperatures of a few hundred kelvin or less, a-iron changes into a hexagonal close-packed (hcp) structure, which is also known as e-iron; the higher-temperature y-phase also changes into e-iron, but does so at higher pressure. The b-phase, if it exists, would appear at pressures of at least 50 GPa and temperatures of at least 1500 K and have an orthorhombic or a double hcp structure. These high-pressure phases of iron are important as endmember models for the solid parts of planetary cores. The inner core of the Earth is generally presumed to be an iron-nickel alloy with e (or b) structure. Somewhat confusingly, the term "b-iron" is sometimes also used to refer to a-iron above its Curie point, when it changes from being ferromagnetic to paramagnetic, even though its crystal structure has not changed.
The mentioned iron compounds have been used as pigments (compare ochre) since historical time and contribute as well to the color of various geological formations, e.g. the Buntsandstein (British Bunter, colored sandstein). In the case of the Eisensandstein (a jurassic 'iron sandstone', e.g. from Donzdorf) in Germany and Bath stone in the UK, iron pigments contribute to the yellowish color of large amounts of historical buildings and sculptures. The proverbial red color of the surface of Mars is derived from an iron oxide-rich regolith.
Iron is the first of the transition metals that cannot reach its group oxidation state of +8, although its heavier congeners ruthenium and osmium can, with ruthenium having more difficulty than osmium. Ruthenium exhibits an aqueous cationic chemistry in its low oxidation states similar to that of iron, but osmium does not, favoring high oxidation states in which it forms anionic complexes. In the second half of the 3d transition series, vertical similarities down the groups compete with the horizontal similarities of iron with its neighbors cobalt and nickel in the periodic table, which are also ferromagnetic at room temperature and share similar chemistry. As such, iron, cobalt, and nickel are sometimes grouped together as the iron triad.
The first iron production started in the Middle Bronze Age but it took several centuries before iron displaced bronze. Samples of smelted iron from Asmar, Mesopotamia and Tall Chagar Bazaar in northern Syria were made sometime between 3000 and 2700 BC. The Hittites established an empire in north-central Anatolia around 1600 BC. They appear to be the first to understand the production of iron from its ores and regard it highly in their society. The Hittites began to smelt iron between 1500 and 1200 BC and the practice spread to the rest of the Near East after their empire fell in 1180 BC. The subsequent period is called the Iron Age.

eXTReMe Tracker
Organizers: