South Baltic Gas Forum
5 - 9 September 2011, Gdańsk, Poland

Electricity generation

Electricity generation is the process of generating electric power from sources of primary energy. For electric utilities in the electric power industry, it is the first stage in the delivery of electricity to end users, the other stages being transmission, distribution, energy storage and recovery, using the pumped-storage method.
The fundamental principles of electricity generation were discovered in the 1820s and early 1830s by British scientist Michael Faraday. His method, still used today, is for electricity to be generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. Central power stations became economically practical with the development of alternating current (AC) power transmission, using power transformers to transmit power at high voltage and with low loss.
Electricity generation at central power stations started in 1882, when a steam engine driving a dynamo at Pearl Street Station produced a DC current that powered public lighting on Pearl Street, New York. The new technology was quickly adopted by many cities around the world, which adapted their gas fueled street lights to electric power, and soon after electric lights would be used in public buildings, in businesses, and to power public transport, such as trams and trains.
Several fundamental methods exist to convert other forms of energy into electrical energy. The triboelectric effect, piezoelectric effect, and even direct capture of the energy of nuclear decay Betavoltaics are used in niche applications, as is direct conversion of heat to electric power in the thermoelectric effect. Utility-scale generation is done by rotating electric generators, or by photovoltaic systems. A very small proportion of electric power distributed by utilities is provided by batteries.
Electrochemistry is the direct transformation of chemical energy into electricity, as in a battery. Electrochemical electricity generation is important in portable and mobile applications. Currently, most electrochemical power comes from batteries. Primary cells, such as the common zinc–carbon batteries, act as power sources directly, but secondary cells (i.e. rechargeable batteries) are used for storage systems rather than primary generation systems. Open electrochemical systems, known as fuel cells, can be used to extract power either from natural fuels or from synthesized fuels. Osmotic power is a possibility at places where salt and fresh water merges.

eXTReMe Tracker